200XMichigan
11-25-2010, 10:50 AM
Designing to the three-wheeler's inherent characteristics can produce a high-performance machine that will out corner many four-wheelers. A well designed three-wheeler is likely to be one of the most responsive machines one will ever experience over a winding road. Superior responsiveness is primarily due to the three-wheeler's rapid yaw response time.
Yaw response time is the time it takes for a vehicle to reach steady-state cornering after a quick steering input. A softly sprung four-wheeler will have a yaw response time of about 0.30 seconds, and a four wheel sports car will respond in about half that time. A well designed three-wheeler can reach steady-state cornering in as little as 0.10 seconds, or about 33 percent quicker than a high-performance four wheel car.
Quick steering response has nothing to do with the number of wheels or how they are configured. It is a byproduct of reduced mass and low polar moment of inertia. A typical three-wheeler is lighter and has approximately 30 percent less polar moment than a comparable four wheel design.
Yaw response time is the time it takes for a vehicle to reach steady-state cornering after a quick steering input. A softly sprung four-wheeler will have a yaw response time of about 0.30 seconds, and a four wheel sports car will respond in about half that time. A well designed three-wheeler can reach steady-state cornering in as little as 0.10 seconds, or about 33 percent quicker than a high-performance four wheel car.
Quick steering response has nothing to do with the number of wheels or how they are configured. It is a byproduct of reduced mass and low polar moment of inertia. A typical three-wheeler is lighter and has approximately 30 percent less polar moment than a comparable four wheel design.